For almost every cancer, immune infiltrates are prognostic markers for better overall outcome,” says Bernard A. Fox, Ph.D., CEO of UbiVac and Harder Chair for Cancer Research, Earle A. Chiles Research Institute.
Predictive biomarkers are indicators of whether a patient should get a specific therapy. The use of such biomarkers has been given various names, notes Robert Anders, M.D., Ph.D., associate professor of pathology and assistant professor of oncology at Johns Hopkins University. These names include personalized medicine or individualized medicine.
DNA tumor mutation burden is a predictive biomarker, although RNA alterations must be considered, too. “The androgen receptor (AR) splice variant AR-V7 is an RNA biomarker predicting drug resistance to anti-AR agents. Such agents, which include enzalutamide and abiraterone, represent standard-of-care therapy in castration-resistant prostate cancer,” informs Shidong Jia, M.D., Ph.D., founder and CEO, Predicine.
“Immuno-oncology aims to overcome cancer’s trick, or invisible cloak, by enabling the body’s immune system’s T cells to attack cancer cells,” remarks David Duffy, Ph.D., CTO and vp of research, Quanterix. “Knowing if therapeutic strategies have worked will likely require measurement of immune-response molecules, rather than genetic analysis of tumor cells.”
“After over a decade of preclinical work, researchers uncovered the potential of immune checkpoint blockade by targeting CTLA4 and the PD-1/PD-L1 axis in human tumors,” adds Daniel E. Carvajal-Hausdorf, M.D., postdoctoral associate, Yale School of Medicine.
Each of the preceding comments is offered in anticipation of a conference, CHI Biomarkers for Cancer Immunotherapy. At this conference, which is scheduled to take place February 23–24 in San Francisco, Drs. Fox, Anders, Jia, Duffy, and Carvajal-Hausdorf will elaborate on their insights. In this article, these scientists summarize their most relevant findings.